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The average lift height of vapor bubbles in underheated alcohol boiling on vertical 
aluminum walls is considered. Using the Ozeen [5] approximation the lift velocity 
of the gas in the liquid is calculated from Reynolds numbers up to ~ 20, and the 
rate of collapse of a vapor bubble is estimated. 

It has now been fully established that the generation, growth, and detachment of vapor 
bubbles on a heated wall bears a statistical character [I, 2], while the parameters defining 
the statistical distribution depend on the wall material, the treatment applied to the latter, 
the type of liquid, its mode of preparation, the heat flows involved, the thermodynamic 
parameters, the degree of underheating of the liquid, the wall temperature, and so on. Sur- 
face boiling may be divided into two modes, respectively characterized by moderate and sub- 
stantial underheating. For moderate underheating the vapor bubbles formed on the walls de- 
tach themselves and pass into the liquid, where as a result of condensation they gradually 
collapse. For a high degree of underheating the layer of heated liquid is so thin that the 
developing bubbles entirely fail to escape, and vanish while still on the wall. 

In this paper we shall consider the first proven. The greatest diameter of escaping 
bubbles in the boiling of an underheated liquid is ~i mm [2]. The lift velocity may reach 
~30 cm/sec and the Reynolds �9 Re = Uro/v~ 30, i.e., the Stokes solution is inappli- 
cable. A solution to the problem of a single gas bubble moving in a liquid was obtained in 
[3] on the basis of the method of coalescing asymptotic expansions [4]. However, the number 
of approximations employed appears to have been insufficient, and this led to a physically 
inexplicable result: for Re ~ 2.5 the resistance to the motion started increasing (Fig. i). 

In order to estimate the rate of flotation of a single bubble in an infinite liquid we 
shall �9 attention to the Ozeen approximation [5]: a flow of viscous liquid is incident 
upon a spherical bubble of radius ro at a velocity U. We shall pay no attention to the 
change in the size of the bubble due to condensation; we shall take the corresponding cor- 
rection factor for the resistance from [6]. The motion inside and outside the bubble is 
respectively described by the equations 

gradpl : ~lAv~, divvl = O, (1) 

U Ov _ 1 gradp q- vA~, d i v v =  O. (2) 
Ox p 

We employ t h e  c o n v e n t i o n a l  n o t a t i o n ,  t h e  i n d e x  1 s i g n i f y i n g  q u a n t i t i e s  r e l a t i n g  t o  t h e  v a p o r  
i n s i d e  a b u b b l e  o r  t h e  l i q u i d  i n s i d e  a d r o p .  In  s p h e r i c a l  c o o r d i n a t e s  t h e  b o u n d a r y  c o n d i -  
t i o n s  will be 

v r = UcosO, v o = - - U s i n O  :for r - + o o ,  

v , = v l , = O ,  v o = v ~ o ,  P r r = P ~ , , ,  P ,o=P~ ,o  fo r  r = r  0, 
(3) 
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Fig. i. Resistance of a spherical gas bubble for motion in a liquid: 
i) Solution of [3]; 2) present solution; 3) experiment. 

Fig. 2. Lift height and velocity of a vapor bubble in alcohol and 
water: l) Velocity in water (cm/sec); 2) in alcohol (cm/sec); 3) lift 
height in water (cm,deg); 4) in alcohol (cm.deg). 

the solution being bounded in the center of the drop or bubble; Prr and Pr0 denote the 
corresponding components of the stress tensor. We seek the solution of Eq, (i) in the form 

rOlr (r, O) = f (r) cos O, Ulo (r, O) = - - g  (r) sin O, Pl (r, O) = laxh (r) cos 0 

and we obtain 

f (r) = a~ + a__~_~ + ao + a~r ~, 
1.3 1" 

g ( f  ) - -  a3 ~ a2 , , 
i - - ~ - a o ~ -  2 a l  r2,  

2r ~ 2r 

h (r) a~ , = -c  IOalr ,  

with due allowance for the boundary conditions 

f (r) = - -  al  (1"2o - -  r2), g (r) = a 1 (2r 2 - -  ro), h (r) = lOalr.  

It was shown in [5] that the solution of Eq. (2) was 

O~p 1 0% 

v ~ = - & r  + 2k  Or 

1 0 q o  ~ 1 OZ 
:~ cos O, v o =  ~ + ;~ s inO, (4) 

r O0 2kr  O0 
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Fig. 3. Arrangement of the experiments: i) tank containing the liquid; 
2) annular screen; 3) liquid. 

Fig. 4. Pressure increment p (kg/cm 2) in the tank as a function of the 
height H(mm) at which the annular barrier is situated. 

V~=O, p=po--PU &p 
Ox (4a )  

where 

~ =  A1 § + (5) 
07- . . . .  

{ [ ] 02 [exp(--kr)]-l-" "} ' exp____(--kr) _}_ C1 0 exp ( - - k r )  q. Co. - - -  (6)  
% = - -  U + e ~x Co r ~ x  r Ox ~ r 

Ai, C i are constant k = U/2v. 

In the Ozeen approximation the solution allows for the second terms of the expansions 
in terms of the Re~olds number. If, therefore, we carry out the expansions in te~s of Re 
in Eq. (6) and retain terms with coefficients of the order of Re in (5) and (6), we shall 
approximately obtain 

A o Ax cos0 A2 (3cos~ 0 - 1) q~ ,~ -i  , 
r r 2 r 3 

~ N - - U - ] - C o [  + - -k  (l--cosO)-~- ~2r (1--cos0)21 --- 
L - -  J 

(cos 0 k cos 2 0 ~ C 3c~ -- 1 
- -  C1 \ 7  -~- . . . . .  r / l- 2 --ra 

(5a) 

(6a) 

SuSstituting (5a) and (6a) into (4) and (4a), and the resultant values of the velocities 
and the pressure (together with the velocities and pressure inside the bubble) into Eq. (3), 
and subsequently equating the coefficients or cosle and (3cos28--i) in the resultant ex- 
pressions, we obtain a system of linear equations for determining A i, Ci, a,: 

3 U r  o - -  2alr~o 
. U ~t Co . . . . .  3 . . . .  , C1 = kr~Co, 

a l  -~ 2r2 " I~ 4" I't------l' 2 - -  k r  o 

2 

Ao = T { krg-- Co, A1- r~ U + Co 
2 -5- " 

(7) 
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Az and C= enter into a single equation and to the degree of approximation assumed are 
not separated from one another; as in the Ozeen solution, we take no further note of the 
corresponding terms in (5) and (6). Substituting a~ and Co we obtain 

2Ft -F 3Ix~ 
C o = C ~  3~x+31~ ~ '"  

Here Co is the value of Co for a solid sphere. In extreme cases, in which we consider the 
motion of a liquid drop in an incompressible gas ~i >> ~, so that ~i = 0, Co = C~ and the 
flow outside the drop coincides with the flow around a solid sphere for the same Re number; 

�9 when we consider the motion of a gas bubble in a liquid ~ >> Z~, so that ~I = U/2r~, Co = 
=/3 C~ and the difference relative to the motion of a solid sphere will be at its greatest. 
The velocities associated with the motion of a bubble, expressed in terms of the coefficients 
Ai, C i, coincides with the analogous expressions for the motion of solid spheres [5]; on the 
surface of the bubble ~ sin e/@ + Z~) and may equal half the velocity of the center of the 
b u b b l e .  

The resistance of the Bubble is given by: 

i F --= (pr~COS 8 -- Pro sin @),:=,~ 2aros'n Od0, 
0 

p,,~ =: p-:. 2~ ( av~ ] .  
ar ] 

From t h e  e q u a t i o n  o f  c o n t i n u i t y  

(8) 

Ov r 
Or ] ,=r~ 

1 Ov o 
r o OO 

0) v o ctg (9) 
r = / -  o 

Since v r = 0 over the whole surface of the bubble 3Vr/3e = 0, and from the expression for 
the projection of the vortex ~I = ve/r + 3ve/3r -- i/r(3Vr/~e)(~ r = ~e = 0),on the drop sur- 
face 

-gP]r,o= , =- ~ ro ...... (lO) 

Substituting the expressions for the stress tensors (9), (i0), (4a) into (8), remembering 
that, for the small spheres considered in this problem, Po = const, and describing ~l in 
Cartesian coordinates, in which 9y = ~X/~z, ~z = 3X/3y, we obtain 

i &p 8q9 ] 2 sin2 0 cos O} sinede, F=2ar~pU t [  0fl~ cos 0 -} - -  sin k sin O J- - -  sin k sin O ~:?aK0 
. [[ Ox OV Oz 
0 

The integral of the second term is equal to zero, the first term is equal to ~(r, e)/~r. 
According to [5], quite independently of the number of terms considered in the expansion 
for ~ all the terms except the first will vanish on integration'over the whole surface of 
the sphere; the first term will give 

8r : - -  J J r2 
S S 

F_~_4~pUAo~6n~tUro( l+ 3 Re) 2~-t -3~t l  : 
' 8 3p + 3pl 

- , 3 t ~  3 t z i  

( l l )  
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Thus, as in the Stokes approximation, the resistance of the liquid sphere is determined by 
the product of the resistance coefficient of a solid sphere and a correcting factor depending 
ontheviscosity of the medium inside and outside the sphere. It may be shown that the 
solution in the Ozeen approximation is suitable for Re < 1/2; for Re ~ 1/2 comparison 
with experiment is required. For Re = i0 the approximate solution is 1.5 times as great as 
the experimental values of the resistance given in [7]. Figure 1 compares the resistance of 
a single bubble in an infinite liquid calculated by means of Eq. (Ii) (C D = F/(pUa/2 ~r~) 
with the generalized experimental data of [8]. For Re= I0 the calculated resistance is ~3 
times greater than experimental. Under real conditions the resistance of the bubble to the 
motion may increase by up to another 1.5 times, owing to the presence of surface-active 
substances in the liquid [9]; a slight increase may also occur as a result of the presence 
of the wall close to the moving bubble [i0]. However, for the boiling of an underheated 
liquid on a vertical wall the simultaneous motion of a large number of bubbles will lead to 
a fall in resistance. According to [ii], the resistance of two solid spheres moving parallel 
to one another in a liquid, calculated on the Stokes approximation, falls by a factor of 
~1.5 times as they are brought closer together. The presence of a spherical liquid drop 
c~uses less perturbation in the flow than a solid sphere of the same radius; in particular 
.there is less vorticity of the flow, less resistance of the drop, the velocity of the liquid 
will be less behind the drop than behind a solid sphere, and the influence of other drops 
on the motion will be less than in the case of solid spheres. In our present case the in- 
tensity of the vortices will, to a first approximation, be determined by the following equa- 
tion for r/ro > ~i0. 

1 + k r  
~2 = C O r2 sin 0 exp [--kr (1 cos 0)], (12)  

i.e., at coincident points in space the vorticity will be one and a half times smaller for 
the motion of a gas bubble in a liquid than for the motion of a solid sphere. Thus in all 
cases the expressions for the resistance of a spherical bubble or drop, the velocities, and 
other perturbations of the surrounding liquid will constitute the product of several factors, 
each of which describe the influence of a particular phenomenon. This structure of the 
equations remains intact for large Re numbers as well; for example, according to [12] the 
resistance of an individual member of a large number of gas bubbles moving in a liquid will 
for i ~ Re ~ 300 be a factor of (I - ~5/3)/(i -s) 2 times smaller (s is the volumetric 
proportion of gas) than the resistance of a single bubble. Subsequently for calculating the 
lift height of the vapor bubble we shall use Eq. (ii). 

The rate of condensation of the vapor in the bubble for ro < 0.5 mm is determined by 
the rate of heat transfer from the surface of the bubble into the mass of liquid. The heat 
:outflow was calculated using the interpolation equation 

1 
Nu = 1 + ~ Pr~/2Rel/2. 

The second term (according to [9]) describes the heat outflow from a small moving bubble for 
large Pr numbers, the first describes the heat outflow from a stationary bubble by way of 
molecular heat conduction. The distance which the vapor bubble travels before vanishing may 
be calculated from the equations 

u dr~ -- ~ (T~-- T~ ( - /-~-r ) U =  g 
3v 

2 
rO 

3 I -~ %- Re (13) 

The results of the calculations are presented in Fig. 2. The calculations were carried 
out for thermophysical properties taken at 50~ even for liquids differing very considerably 
from one another, both the lift velocity and the lift height remained almost exactly the 
same. The small relative velocities of the bubbles U ~ i cm/sec evidently explain the fre- 
quentlymentioned fact that the process of surface boiling is independent of the velocity of 
the liquid r13-17]. 
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Experiments were carried out in a tank 310 mm high and 300 mm in diameter. The walls 
were machined from AMG-6 aluminum alloy sheet 4.9 mm thick. The tank was filled to a height 
of ~270 mm with alcohol. The pressure in the "cushion" was 4.9 abs. arm, which corresponds 
to an alcohol saturation temperature of T s = 125~ pressurization was effected with argon~ 
The heat flux to the side wall and the top of the tank was provided By an infrared radiator 
assembled from 193 KI-220-I000 lamps. The top of the tank was heated to T = 150~ before the 
experiment in order to avoid the condensation of alcohol vapor. The initial temperature of 
the alcohol was ~15~ The heat flux was q = 500 kW/m z and 710 kW/m z. During the experiments 
we measured the temperature of the outer walls of the tank with i0 thermocouples sited along 
two opposite generators at a distance of 45 mm from one another in the vertical direction, 
and the thermal flux with calorimeters; we also Neasured the temperature of the top (roof), 
the temperature at two points inside the tank at distances of 20 and 40 mm from the inner 
surface of the top, and the pressure inside the tank. We neglected the cross-leakage of the 
heat along the side walls from the top and bottom of the tank, since the effects of this 
were only perceptible at a distance of 10-12 mm. Under the experimental conditions (Tw--Ts) 
~5 ~ and the underheating was (Ts--To) ~ ii0 ~ In order to study the life height of the vapor 
bubbles in the underheated liquid, we placed an annular screen or barrier at various heights 
in the tank (Fig. 3); this drew the bubbles away from the layer close to the wall and into 
the interior of the liquid. We see from Fig. 4 that for a distance from the annular barrier 
to the surface of the liquid H = 8-10 cm the rise in pressure in the "cushion" does not de- 
pend on this distance, i.e., the bubbles formed at a greater depth collapse in the liquid and 
never reach the surface of the alcohol. When the annular barrier was placed at a depth of 
~I cm the pressure increment in the "cushion" was two or three times smaller than when the 
barrier was situated at greater depths, i.e., a considerable proportion of the fairly large 
bubbles fo~uned on the wall down to a depth of 5-8 cm reach the surface and contribute to 
the pressure rise; the lift height of the bubbles actually observed corresponds to the 
greatest initial radius of ~0.35-0.4 mm. 

NOTATION 

p, pressure; U, velocity of incident flow at infinity or lift velocity of the bubble; 
r, radius; Vr, vs, radial and azimuthal velocity components; p, density; A, Laplacian; g, 
gravitational acceleration; x, z, coordinate along the motion, displacement of the bubb!e~ 
~, thermal conductivity; T, Ts,Tw, To, temperature, saturation temperature, wall temperature~ 
and temperature of the liquid a long way from the bubble or at the initial instant of time; 
l, specific heat of vaporization; c, specific heat; Re, Pr, Nu, Reynolds, Prandtl, and 
Nusselt numbers, respectively; H, lift height of the bubble. 
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